The Spin Holonomy Group in General Relativity
نویسندگان
چکیده
It has recently been shown by Goldberg et al that the holonomy group of the chiral spin-connection is preserved under time evolution in vacuum general relativity. Here, the underlying reason for the timeindependence of the holonomy group is traced to the self-duality of the curvature 2-form for an Einstein space. This observation reveals that the holonomy group is time-independent not only in vacuum, but also in the presence of a cosmological constant. It also shows that once matter is coupled to gravity, the “conservation of holonomy” is lost. When the fundamental group of space is non-trivial, the holonomy group need not be connected. For each homotopy class of loops, the holonomies comprise a coset of the full holonomy group modulo its connected component. These cosets are also time-independent. All possible holonomy groups that can arise are classified, and examples are given of connections with these holonomy groups. The classification of local and global solutions with given holonomy groups is discussed. PACS: 04.20.Cv, 04.60.+n, 02.40.+m [email protected] [email protected]
منابع مشابه
Space-times and Holonomy Groups
This paper discusses the full holonomy group for space-time manifolds in Ein-stein's general relativity. Some applications of holonomy theory to Weyl manifolds are presented.
متن کاملBi-Gyrogroup: The Group-Like Structure Induced by Bi-Decomposition of Groups
The decomposition $Gamma=BH$ of a group $Gamma$ into a subset B and a subgroup $H$ of $Gamma$ induces, under general conditions, a group-like structure for B, known as a gyrogroup. The famous concrete realization of a gyrogroup, which motivated the emergence of gyrogroups into the mainstream, is the space of all relativistically admissible velocities along with a binary mbox{...
متن کاملIntersecting Connes Noncommutative Geometry with Quantum Gravity
An intersection of Noncommutative Geometry and Loop Quantum Gravity is proposed. Alain Connes’ Noncommutative Geometry provides a framework in which the Standard Model of particle physics coupled to general relativity is formulated as a unified, gravitational theory. However, to this day no quantization procedure compatible with this framework is known. In this paper we consider the noncommutat...
متن کاملOctonionic Yang-Mills Instanton on Quaternionic Line Bundle of Spin(7) Holonomy
The total space of the spinor bundle on the four dimensional sphere S4 is a quaternionic line bundle that admits a metric of Spin(7) holonomy. We consider octonionic Yang-Mills instanton on this eight dimensional gravitational instanton. This is a higher dimensional generalization of (anti-)self-dual instanton on the Eguchi-Hanson space. We propose an ansatz for Spin(7) Yang-Mills field and der...
متن کاملA Spinorial Hamiltonian Approach to Gravity
We give a spinorial set of Hamiltonian variables for General Relativity in any dimension greater than 2. This approach involves a study of the algebraic properties of spinors in higher dimension, and of the elimination of second-class constraints from the Hamiltonian theory. In four dimensions, when restricted to the positive spin-bundle, these variables reduce to the standard Ashtekar variable...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1992